
Transient Diffusion Through a Binary Laminate Separating Finite and 
Semiinfinite Volumes 

INTRODUCTION 

Equations for transient diffusion have been developed and tested for a system comprising a ho- 
mogeneous membrane separating finite and semiinfinite baths.'S2 Here the analysis is extended 
to cover a binary lamiiate slab as membrane under selected initial and boundary conditions; relatively 
simple expressions again obtain for the limiting condition of long times. A related system with a 
symmetrical ternary laminate slab as membrane has been analyzed for constant concentration 
gradient of penetrant in the outer  layer^.^ These systems are representative of several of practical 
value, for example, loss of solute or vapor from binary laminate containers and homogeneous 
membranes with a boundary layer on one face. 

DIFFUSION EQUATIONS 

Consider a binary laminate slab AB of unit cross section with laminae A and B of thickness a and 
b, respectively. Lamina A is in contact with the semifinite bath at  x = -a and B with the finite 
volume V at x = b. The initial concentrations are uniform in each phase and are c c  and co in the 
semiinfinite and finite volumes, respectively, and C i  and C', in the respective laminae A and B. It 
is assumed that equilibrium is maintained at  all interfaces and that the partition coefficients K A  
= CA/C, K B  = C d c ,  and K = CA/CB = KA/KB are constant. It is also assumed that the diffusion 
constants D A  and DB for the respective laminae are constant. 

To simplify the presentation, the system is represented by AB), where the parenthesis closure 
denotes the finite volume V in contact with the lamina B. Permeation is initiated in a system pre- 
viously at equilibrium by changing the concentration at  an interface and is represented by a period; 
for example, AB.) represents permeation initiated byhanging the concentration in volume V and 
hence at x = b in lamina B. A bar above AB, as in AB.), indicates that the concentration at  the B 
interface is decreased to induce permeation. Conversely, B.) indicates that the concentration is 
increased. A constant gradient of concentration in a particular lamina is represented by a small 
letter, for example, aB.). The initial conFtions examined here are represented by .AB.), .AB), AB.), 
A.B.), A.B), .aB.), aB.), and .aB). 

The System .AB.) 

The differential equations with the initial and boundary conditions are4v5 

(1) 

(2) 

d2CA 1 dCA d2CB 1 bCB --_-. -=-- - 
ax2 D ,  dt ' bx2 D B  dt  

C ~ ( - a , t )  = Ck,c~(X,o) = CX; CB(b,O) = cb,c~(X,o) = cb 

HB is the ratio of the amount of diffusant in lamina B to that in volume V at  equilibrium and is given 
by HB = KBVB/V,  where V B  is the volume of lamina B. 

The concentrations in each lamina can be expressed as follows using the method of Laplace 
transformations4: 

m 

C A ( X , t )  = c i  + A, (x )  exp ( -D&ft /b2)  
n= 1 

where 
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A , ( x )  = 2b',[(Cl - CA)R, cos (R,h/6)  + (Ck - C X ) @ n ]  
x [cos (R,X/6)  sin (R,Xx/Ga) + sin (RnX/6)  cos ( R n X ~ l 6 a ) ] / L n  ( 7 )  

and 

@, = HB sin R, + R,  cos R, 

8, = H B  cos R,  - R ,  sin R, 

and 62 = DA/DB, X = a/b ,  and R,  are the nonzero, positive roots of 

b'6K = @ t a n  (RX/6)  (13) 

Normally the concentration or pressure of diffusant c ( t )  in the volume V is measured. Using eq. 
(8) and CB(b, t )  = K B C ( ~ ) ,  one obtains 

with 

B, = ~ H B  sin (R,X/6) [ (co  - c L ) R ,  cos (R,X/6)  + ( c L  - c c ) @ , ] / L ,  (15) 

To illustrate the application of eq. (14). four experimentally accessible cases are considered and 
designated I, 11,111, and IV, corresponding to the following initial conditions: 

(I) B.); cc = c' = 0 , 
(11) .AB); cc = 0, 

(111) AB.); cc = c '  # 0, 

(IV) .MI; cc # 0, 

c O z 0  

c' = co # 0 
co = 0 

c' = c o  = 0 

Equation (14)  may be written as 

where TB = DBt/b2 and F' with i = I, . . . , IV are reduced concentrations such that F1 = F" = c ( t ) / c o  
and F"' = F'" = 1 - c ( t ) / c c  and 

B!, = BE' = ~ H B R ,  sin (R,X/6) cos ( R n h / 6 ) / L ,  (17)  

(18)  

As for the homogeneous slab .B.),2 relatively simple expressions obtain for long times corresponding 
to the first term of the summation in eq. (16), namely, 

(19) 

A plot of In F' versus t in the limit of large t will be linear with slope -DBR:/b2 and intercept In 

The System A.B.) 

This corresponds to lamina A initially in equilibrium with the semiinfinite bath but not with lamina 
B; the differential equations and boundary conditions are identical with eqs. ( 1 )  to (5), except that 
in eq. ( 2 )  

B!! = B',V = ~ H B @ , ,  sin ( R n h / 6 ) / L ,  

FC = B' exp ( -R:TB) 

RI. 

CA(-a, t )  = CX, CA(T,O) = c i  (20) 

The solutions for the concentrations can be expressed as 
m 

C A ( X , ~ )  = CX + C,(x) exp (-D&:t/b2) 
n = l  
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and 

where 

G,(x) = A,(x)  cos (RnX/6) and Pn(x) = E , ( x )  cos (RnX/6) (23) 

In terms of the reduced variables Fi and TB, one obtains as before 
m 

F' = x Pf exp ( - R ; T ~ )  
n = l  

where 

Pf = EL cos (RnX/6) (25) 

It is likely that cases A.@ and A.B.) corresponding to i = I1 and IV, respectively, are experimentally 
feasible. 

The System .aB.) 

Here dCAldx is maintained constant; eq. (4) is now replaced by 

Otherwise, eqs. (1) to (5) but for the first part of eq. (1) apply. The solution is 
m 

CB(x,t) = c& + C E,(x) exp (-DgU:t/b2) 
n=l  

with 

where the U, are the nonzero, positive roots of 

%6K = +UX/6 

and 

Mn = Un(Hg + Hg + U:) 

In terms of the reduced variables, one obtains for the concentration in V 
w 

F i =  x E f e x p ( - U ; ~ ~ )  
n = l  

with 

Comparing eqs. (29) and (131, it is clear that the rates of decay of F' given by eq. (19) and by eq. (31) 
at long times will not be markedly different. 

Comparison with System .B.) 

In the limit X - 0, eqs. (16), (24), and (31) reduce to the corresponding equation for the homoge- 
neous system .BJ; 

[eq. (13), ref. 21, where the Fi are the reduced concentrations; Qn are the nonzero, positive roots of 
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H B  = Q tan Q [eq. (5), ref. 21; and 1 is the thickness. Equation (16) also reduces to eq. (34) when 6 
= K = 1, representing a homogeneous membrane with 1 = (1 + X)b where Qn = (1 + A)R,. 
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